If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12c+c^2+35=0
a = 1; b = 12; c = +35;
Δ = b2-4ac
Δ = 122-4·1·35
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2}{2*1}=\frac{-14}{2} =-7 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2}{2*1}=\frac{-10}{2} =-5 $
| 12-3x/4=2x | | 2x^2+20x+45=0 | | 14x-40=x | | x+6/2=11 | | n^2+1=13^2+1 | | Y=-2x^2+80x+350 | | (3x-4)^2-(100)=0 | | 9c-7=11 | | 3.9q-1.5-5.9q=-3.0q-4.5 | | 9h+7-6=28 | | 7-12=x-6+2•2 | | 3x+4(x-3)=30 | | 8-4x=x-27 | | y/11=-10 | | 3-2x/12=3/2 | | 2p+8=26 | | X³+4x²+3x+6=0 | | 13+1=6x+50 | | -4(-3x+1)-7x=5x-4 | | 8-6z=-34 | | 3(2z+1)+4(z+3)=5(2z+1)+4(3z+1) | | y(500)+2y(200)=9000 | | 8-6z=34 | | 1/4=y/14 | | 5,152=28d | | 1−4x=56+5x | | 6+2x=x+1 | | F(x)=3x-2.F(6)= | | 3y+2y=10y+15 | | 2(y+3)=5+3y | | 4x+20=3x+17 | | -1/9x=-9 |